Programmare Arduino — Le basi

Arduino è collegabile al PC tramite un cavo USB. L'IDE (Integrated Development Environment) è l'ambiente in cui si scrive e si carica il codice sulla scheda Arduino (scaricabile dal sito ufficiale di Arduino (https://www.arduino.cc/). E' possibile anche usare l'*Arduino Web Editor* per programmare online, anch'esso disponibile nel sito ufficiale di Arduino.

Un programma Arduino è chiamato sketch e usa un linguaggio simile a C/C++. Ogni sketch ha due funzioni fondamentali (spiegate nel dettaglio qui)

- setup(): Configura i pin o inizializza componenti (eseguito una sola volta all'inizio).
- loop(): Contiene il codice che viene eseguito continuamente.

[crayon-6811ad06e47bf341652823/]

Ogni funzione e in generale ogni blocco di codice, viene racchiuso tra parentesi graffe { e }. Il totale delle parentesi aperte { deve essere lo stesso di quelle chiuse }.

Ogni istruzione di programma termina con un punto e virgola ;

E' possibile inserire dei commenti nel codice, utilizzando la doppia barra // per commentare su una linea e barra asterisco (e asterisco barra) /* ... */ per commenti su più linee.

Nella funzione **setup**(), vengono tipicamente configurati i pin. La funzione da usare è **pinMode**. Ad esempio:

[crayon-6811ad06e47c8637793484/] [crayon-6811ad06e47d0175967368/]

Altre funzioni importanti e ricorrenti sono:

- digitalWrite(pin, valore): Imposta un pin su HIGH o LOW.
- digitalRead(pin): Legge lo stato di un pin digitale (HIGH o LOW).
- analogWrite(pin, valore): Imposta un'uscita PWM (valori tra 0 e 255).
- analogRead(pin): Legge un valore analogico da un pin (da 0 a 1023).
- delay(millisecondi): Imposta una pausa nell'esecuzione del programma. La pausa è espressa in millisecondi

Esistono molte altre funzioni, che vengono illustrate con gli esempi presenti nel sito.

Per altre funzioni, si rimanda ai tutorial ufficiali di Arduino.

Braccio Tinkerkit Arduino

Pilotare il braccio robotico Tinkerkit tramite Arduino e 2 Joystick

Rivelatore di Gas con Allarme Sonoro e Visivo

L'obiettivo di questa esperienza è realizzare un rilevatore di GAS con allarme sonoro (buzzer) e visivo (led lampeggiante). Per la realizzazione di questo dispositivo è stato utilizzato un particolare sensore denominato MQ-2.

ARDWARE #11 Realizzare un SOMMATORE a 8 BIT

Realizzare un SOMMATORE a 8 BIT utilizzando l'integrato 74H283. Un progetto realizzato dall'alunno della classe 1CSA del liceo Enrico Medi di Senigallia: Carlo Tozza.

ARDWARE #10 Realizzare un SOMMATORE a 4 BIT

Realizzare un SOMMATORE a 4 BIT utilizzando l'integrato 74H283.

ARDWARE #9 Realizzare un FULL ADDER come combinazione di HALF ADDER

Realizzare un FULL ADDER come combinazione di HALF ADDER

ARDWARE #8 Realizzare un HALF ADDER a Porte Logiche AND e XOR

Realizzare un Half Adder utilizzando le porte logiche AND e XOR.

ARDWARE #7 Realizzare un HALF ADDER a Porte Logiche AND, OR e NOT

Realizzare un Half Adder utilizzando le porte logiche AND, OR e NOT.

ARDWARE #6 Porta Logica XOR 74HC86

Utilizzare la porta logica XOR (74HC86)

ARDWARE #5 Porta Logica OR 74HC32

Utilizzare la porta logica OR (74HC32)